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Motivation

• Direct inverting the covariance matrix K is time
consuming, because K is a dense matrix. The
main idea of this work is to find an exact
representation of K in terms of sparse matrices.

• Suppose K is a one-dimensional kernel. Consider
the linear space K = span{K(·, xj)}n

j=1. The goal
is to find another basis for K, denoted as {ϕj}n

j=1,
satisfying the following properties:
1 Almost all of the ϕj’s have compact supports.
2 {ϕj}n

j=1 can be obtained from {K(·, xj)}n
j=1 via a sparse

linear transformation, i.e., the matrix defining the linear
transform from {K(·, xj)}n

j=1 to {ϕj}n
j=1 is sparse.

We assume that the one-dimensional kernel K is
a Matérn correlation function, whose spectral
density is proportional to (2ν/ω2 + x2)−(ν+1/2).

Kernel Packet

1 Given a one-dimensional covariance function K
and input points a1 < · · · < ak, a non-zero
function ϕ is called a kernel packet (KP) of
degree k, if it admits the representation
ϕ(x) = ∑k

j=1 AjK(x, aj), and the support of ϕ is
[a1, ak].

2 Let x1 < · · · < xn be the input data, and K a
Matérn correlation function with a half-integer
smoothness. Suppose n ≥ k. We can construct n
functions {ϕj}n

j=1, as a subset of K, which form a
basis for K, referred to as the KP basis.

3 Let K be a one-dimensional Matérn kernel. Our
study shows that, under certain conditions, K
admits the following simple factorization:

K = ΦA−1, (1)
where both Φ and A are banded matrices, and
their bandwidths depend only on the smoothness
of K. This factorization is called the Kernel
Packet (KP) factorization.

Main Theory

Let K be a Matérn correlation with smoothness ν. If ν is a half integer,
then K admits a KP with degree 2ν + 2. In addition, given a1 < · · · < ak,
function ϕa with the form ϕa(x) := ∑k

j=1 AjK(x, aj) is a KP if and only if the
coefficients Aj’s are given by a non-zero solution to ∑k

j=1 Aja
l
j exp{δcaj} = 0,

with l = 0, . . . , (k − 3)/2 and δ = ±1.

Figure 1 illustrates that the linear combination of 5 components {K(·, aj)}5
j=1

provides a compactly supported KP corresponding to Matérn-3/2 correlation
function. Further, it is straightforward to check that, given any x ∈ R, the
vector ϕ(x) = (ϕ1(x), . . . , ϕn(x))T has at most k − 1 non-zero entries. As a
result, we can construct a basis for K satisfying the sparse properties. Figure 2
illustrates a KP basis corresponding to Matérn-3/2 and Matérn-5/2 correlation
function with input points X = {0.1, 0.2, . . . , 1}.

Figure 1:The addition of AjK(·, xj) (colored lines, without compact supports) leads to a KP
(black line, with a compact support).
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Figure 2:KP basis functions corresponding to Matérn-3/2 (left) and Matérn-5/2 (right) cor-
relation function with input points X = {0.1, 0.2, . . . , 1}. The KPs, left-sided KPs, and the
right-sided KPs are plotted in orange, blue, and green lines, respectively.
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Figure 3:product KP basis functions ϕ(.4 .5 .6 .7 .8)(x1)ϕ(.4 .5 .6 .7 .8)(x2) corresponding to Matérn-
3/2 (left) and ϕ(.3 .4 .5 .6 .7 .8 .9)(x1)ϕ((.3 .4 .5 .6 .7 .8 .9)(x2) corresponding to Matérn-5/2 (right)
correlation function.

Numerical Experiments

We test our algorithm on the following deterministic function:
f (x) = sin(12πx1) + sin(12πx2), x ∈ (0, 1)2.

Samples of f are collected from a level-η full grid design: XFG
η = ×2

j=1{2−η, 2 ·
2−η, . . . , 1 − 2−η} with η = 5, 6, · · · , 13. We sample 1000 i.i.d. test points
uniformly from (0, 1)2 for each experimental trial. Figure 4 compares the MSE
and the computational time of all algorithms, both under logarithmic scales,
for sample sizes 22j, j = 5, 6, . . . 13.

Figure 4:Logarithm of MSE for predictions with Matérn-3/2 correlation function (left) and
Matérn-5/2 correlation function (middle) and logarithm of averaged computational time
(right). The laGP uses the Gaussian covariance family in both the left and the middle figure.
No results are shown for the cases when a runtime error occurs or the prediction error ceases
to improve.

Conclusions

In this work, we propose a rapid and exact algorithm for one-dimensional
Gaussian process regression under Matérn correlations with half-integer
smoothness. The proposed algorithm only requires O(ν3n) operations and
O(νn) storage.


