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• Introduction
o Gaussian processes (GPs)



•A Gaussian process (GP) is a set of random variables 
such that every finite collection of those random variables 
has a multivariate normal distribution. A GP is defined by 
a mean function        and a covariance function (kernel 
function)          , denoted by

•Why are the GPs important?

• Probabilistic framework for Uncertainty Quantification

• Robust solutions for small datasets

• Encode prior knowledge, flexible and interpretable

Gaussian Processes
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• Regression is used to find a function for estimating the relationships between 
a response and the one or more predictors.

• Suppose that                                       and we have observed                    on     
distinct points                    where                         

• The aim of the GP regression is to predict the output at an untried input      
by computing the distribution of          conditional on                           which 
is a normal distribution with the following conditional mean and variance:

GP Regression
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• Introduction

o Main challenge



•  Computation:
• GP regression: 

• Noise-free: inverse of the covariance matrix

• Noisy: inverse of the covariance matrix with noise

• Issues:

• Inversion requires             time, which limits the scalability of GPs 
when 𝑛 is large.

Main Challenge
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• Kernel Packets (KPs)



• Assumption: 
• Consider noise-free and one-dimensional GPs

• Motivation:
• Note that each entry of                is an evaluation of function                 

for some  . The matrix                 is not sparse because the support of 𝐾 
is the entire real line.

• The main idea of this work is to find an exact representation of 𝐾 in 
terms of sparse matrices.

• This exact representation is built in terms of a change-of-basis 
transformation.

Main Idea
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• Preliminary

• Questions:

• How to construct KPs?

• Do KPs exist?

Definition of KPs

Definition. Given a correlation function 𝐾(∙,∙) and input points 

𝑥1 < ⋯ < 𝑥𝑘, a non-zero function 𝜙( ∙ ) is called a Kernel Packet 

(KP) of degree 𝑘, if it admits the representation

𝜙( ∙ ) = 
𝑗=1

𝑘

𝐴𝑗𝐾 ∙ , 𝑥𝑗 ,

and the support of 𝜙 is 𝑥1, 𝑥𝑘 .
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• How can KPs help with the computation?

• Toy Example: Construct KPs from a moving window of the data with 𝑘 = 5
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10

Construct KPs

Construct a KP 𝜙  ∙ = σ𝑗=1
5 𝐴𝑗𝐾  ∙ , 𝑥𝑗 , 

supported over [𝑥1, 𝑥5]
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• How can KPs help with the computation?

• Toy Example: Construct KPs from a moving window of the data with 𝑘 = 5
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10

Construct KPs

Construct a KP 𝜙  ∙ = σ𝑗=2
6 𝐴𝑗𝐾  ∙ , 𝑥𝑗 , 

supported over [𝑥2, 𝑥6]
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• How can KPs help with the computation?

• Toy Example: Construct KPs from a moving window of the data with 𝑘 = 5
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10

Construct KPs

Construct a KP 𝜙  ∙ = σ𝑗=3
7 𝐴𝑗𝐾  ∙ , 𝑥𝑗 , 

supported over [𝑥3, 𝑥7]
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• How can KPs help with the computation?

• Toy Example: Construct KPs from a moving window of the data with 𝑘 = 5
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10

Construct KPs

Construct a KP 𝜙  ∙ = σ𝑗=4
8 𝐴𝑗𝐾  ∙ , 𝑥𝑗 , 

supported over [𝑥4, 𝑥8]
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• How can KPs help with the computation?

• Toy Example: Construct KPs from a moving window of the data with 𝑘 = 5
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10

Construct KPs

Construct a KP 𝜙  ∙ = σ𝑗=5
9 𝐴𝑗𝐾  ∙ , 𝑥𝑗 , 

supported over [𝑥5, 𝑥9]
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• How can KPs help with the computation?

• Toy Example: Construct KPs from a moving window of the data with 𝑘 = 5
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10

Construct KPs

Construct a KP 𝜙  ∙ = σ𝑗=6
10 𝐴𝑗𝐾  ∙ , 𝑥𝑗 , 

supported over [𝑥6, 𝑥10]
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• How can KPs help with the computation?

• Toy Example: Construct KPs from a moving window of the data with 𝑘 = 5
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10

Construct KPs

❖ Issue: 

• We now have 6 KPs of degree 𝑘 = 5, however, to construct a basis 

of span 𝐾  ⋅ , 𝑥𝑖 𝑖=1
10 , we should have 10 KPs.

❖ Question:

• How to construct another 4 KPs, which are linear independent of 

the existing 6 KPs.

❖ Solution:

• Construct 4 boundary KPs of degree less than 𝑘 = 5: 

    2 left-sided KPs, 2 right-sided KPs
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• How can KPs help with the computation?

• Toy Example: Construct KPs from a moving window of the data with 𝑘 = 5
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10

Construct KPs

Construct a left-sided KP 𝜙  ∙ = σ𝑗=1
4 𝐴𝑗𝐾  ∙ , 𝑥𝑗 , 

supported over [𝑥1, 𝑥4]
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• How can KPs help with the computation?

• Toy Example: Construct KPs from a moving window of the data with 𝑘 = 5
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10

Construct KPs

Construct a left-sided KP 𝜙  ∙ = σ𝑗=1
3 𝐴𝑗𝐾  ∙ , 𝑥𝑗 , 

supported over [𝑥1, 𝑥3]
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• How can KPs help with the computation?

• Toy Example: Construct KPs from a moving window of the data with 𝑘 = 5
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10

Construct KPs

Construct a right-sided KP 𝜙  ∙ = σ𝑗=7
10 𝐴𝑗𝐾  ∙ , 𝑥𝑗 , 

supported over [𝑥7, 𝑥10]
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• How can KPs help with the computation?

• Toy Example: Construct KPs from a moving window of the data with 𝑘 = 5
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10

Construct KPs

Construct a right-sided KP 𝜙  ∙ = σ𝑗=8
10 𝐴𝑗𝐾  ∙ , 𝑥𝑗 , 

supported over [𝑥8, 𝑥10]
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• How can KPs help with the computation?

• Toy Example: Construct KPs from a moving window of the data with 𝑘 = 5
𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10

Construct KPs

• Given 1D input data 𝑥1 < ⋯ < 𝑥𝑛, we can find another basis of span 𝐾  ⋅ , 𝑥𝑖 , called the KP basis, 
which consists of 𝑛 KPs for 𝑛 inputs

• KP basis consists of (𝑛 − 𝑘 + 1) Intermediate KPs (in red), (𝑘 − 1)/2 Left-sided KPs (in blue), and (𝑘 −
1)/2 Right-sided KPs (in green)

Construct a KP 

𝜙  ∙ =
σ𝑗=1

5 𝐴𝑗𝐾  ∙ , 𝑥𝑗 , 

supported over 

[𝑥1, 𝑥5]

𝑥1 𝑥2          𝑥5                    𝑥10
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• KPs do exist for Matérn correlations with 
half-integer smoothness
• Matérn-𝜈 correlation has a KP of degree 

2𝜈 + 2.

• 2𝜈 + 2 is proved to be the lowest possible 
degree.

Existence of KPs

A Matérn 3/2 correlation can 

generate KP of degree 5.

Note: We shall denote 𝑘 ≔ 2𝜈 + 2 and use 𝑘 

to parametrize the Matérn correlation. 

Component 5Component 1KP

Supported 

over [𝑥1, 𝑥5]
Supported over 

24
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Existence of KPs

Paley-Wiener Theorem

If 𝑓 is continuous and of moderate decrease, መ𝑓 is the Fourier transform of 𝑓. Then,

 𝑓 is an entire function of exponential type 𝑀, i.e. 𝑓 is holomorphic on the whole 

complex plane and there exists some constant 𝐶 > 0 such that |𝑓(𝑧)| ≤ 𝐶𝑒𝑀|𝑧|

if and only if
  መ𝑓 is supported in [−𝑀, 𝑀].

Consider a small subset of one-dimensional training inputs                                 and a 

Matérn kernel 𝐾(∙,∙) of smoothness 𝜐 and lengthscale 𝜔

Inverse Fourier Transform
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Existence of KPs

is an entire function

Note:                             has poles at              , each with multiplicity (𝑘 − 1)/2 
The null space of this 

𝑘 − 1 × 𝑘 linear 

system is one-

dimensional if  𝑥1, … , 𝑥𝑘 

are distinct

⇓
For one small subset of 

training inputs 𝒙1:𝑘, we 

can obtain {𝐴𝑗}𝑗=1
𝑘  by 

solving the corresponding 

linear system



• In a matrix form, the correlation matrix admit the following 
factorization according to KP definition:

𝐊 = 𝚽𝐀−1,

   

Matrix Factorization for KPs

=

−1

width = 𝒌
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Intermediate KPs

Each column corresponds to a KP 𝜙(∙) 

evaluated over the inputs {𝑥𝑖}𝑖=1
𝑛

A column consists of the 

coefficients {𝐴𝑖}𝑖=1
𝑘  for a KP 

𝜙 ∙ = σ𝑖=1
𝑘 𝐴𝑖𝐾(∙, 𝑥𝑖)

bandwidth = (𝒌 − 𝟏)/𝟐



• Suppose 𝐾 is a 1D Matérn correlation with a half-integer smoothness,
e.g., 𝜈 = 1.5, 2.5, 3.5, …

• We prove that for any input points in 1D sorted in an increasing order, 
the correlation matrix admit the factorization:

𝐊 = 𝚽𝐀−1,

   where
• 𝚽 is a banded matrix with bandwidth 𝜈 − 1/2.

• 𝐀 is a banded matrix with bandwidth 𝜈 + 1/2.

• Matrix inversion computed as
𝐊−1𝐲 = 𝐀 𝚽−1𝐲 ,

   which takes only 𝑂 𝑛  time and 𝑂 𝑛  storage (assuming 𝜈 is fixed)!

KPs for GP Regression
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The 𝑛 × 𝑛 matrix A is computed 

by solving 𝑛 (𝑘 − 1) × 𝑘 linear 

systems, each column of A 

corresponds to the coefficients 

solved by one linear system

The 𝑛 × 𝑛 matrix 𝚽 is computed 

by 𝚽 = 𝐊𝐀



Experiments for KPs
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•propose a rapid and exact algorithm for one-
dimensional Gaussian process regression under Matérn 
correlations with half-integer smoothness.

•The proposed algorithm only requires 𝑂(𝑛) time and 
𝑂(𝑛) storage

•The proposed method can be applied to some multi-
dimensional problems by using tensor product 
techniques, including grid and sparse grid designs, and 
their generalizations.

Conclusions for KPs
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•Q & A

Thank you!

Any Questions?
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