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with Matérn correlations whose smoothness parameter v is a half-integer. The proposed al-
gorithm only requires (v*n) operations and ({vn) storage. This leads to a linear-cost solver
since v is chosen to be fixed and usually very small in most applications. The proposed method
can be applied to multi-dimensional problems if a full grid or a sparse grid design is used. The
proposed method is based on a novel theory for Matérn correlation functions. We find that
a suitable rearrangement of these correlation functions can produce a compactly supported
function, called a "kernel packet”. Using a set of kernel packets as basis functions leads to a
sparse representation of the covariance matrix that results in the proposed algorithm. Simu-
lation studies show that the proposed algorithm, when applicable, is significantly superior to
the existing alternatives in both the computational time and predictive accuracy.

Keywords: Computer experiments, Kriging, Uncertainty quantification, Compactly sup-
ported functions, Sparse matrices


https://jmlr.org/papers/volume23/21-1232/21-1232.pdf
https://jmlr.org/papers/volume23/21-1232/21-1232.pdf
https://github.com/hchen19/kernel_packet

.I Outline

TEXAS M IVERSIT
Wm Michael Barnes '64 Department of
Industrial & Systems Engineering

* Introduction
oGaussian processes (GPs)
oMain challenge

» Kernel Packets (KPs)
o Main idea
o Definition of KPs
o Construct KPs
o Existence of KPs
o Matrix factorization for KPs
o KPs for GP regression
o Experiments
o Conclusions



* |ntroduction
o Gaussian processes (GPs)

TEXAS A&M UNIVERSITY
!



=

TEXAS A&M UNIVERSITY
Wm Michael Barnes '64 Department of
Industrial & Systems Engineering

» A Gaussian process (GP) is a set of random variables
such that every finite collection of those random variables
has a multivariate normal distribution. A GP iIs defined by
a mean function n(-) and a covariance function (kernel
function) K(.,-), denoted by GP(u(-), K(-,-))

.I Gaussian Processes

* Why are the GPs important?

* Probabilistic framework for Uncertainty Quantification
 Robust solutions for small datasets

* Encode prior knowledge, flexible and interpretable
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.I GP Regression

 Regression Is used to find a function for estimating the relationships between
a response and the one or more predictors.

e Suppose that f(-) ~ GP(u(-), K(-,-)) and we have observed (¥1,---,¥n) ON N
distinct points X = {;}~,, where y; = f(x;) + €, e =" N(0,02),i=1,...,n.

* The aim of the GP regression is to predict the output at an untried input o™
by computing the distribution of f(z*) conditional on y = (v1,---,9.)", which
IS @ normal distribution with the following conditional mean and variance:

E[f(z")|y] = p(z*) + K(z*, X)[K(X, X) + 02L,] " (y — u(X)) (1)
Var[f(z")|y] = K(z",z") — K(z*, X)[K(X, X) + 0L, ' K(X,z") (2)




=

TEXAS A&M UNIVERSITY
Wm Michael Barnes '64 Department of
Industrial & Systems Engineering

* Introduction

o Main challenge



=

TEXAS A&M UNIVERSITY
Wm Michael Barnes '64 Department of
Industrial & Systems Engineering

.I Main Challenge

- Computation:

* GP regression:

* Noise-free: inverse of the covariance matrix [K(X, X)]~1
» Noisy: inverse of the covariance matrix with noise [K (X, X) + o2I,,]~*

e |SSUes:

* Inversion requires O(n3) time, which limits the scalability of GPs
when n is large.
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» Kernel Packets (KPs)
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.I Malin ldea

* Assumption:
e Consider noise-free and one-dimensional GPs

* Motivation:

 Note that each entry of K(X, X) is an evaluation of function K(.,z;)
for some j. The matrix K (X, X) Is not sparse because the support of K
IS the entire real line.

* The main idea of this work is to find an exact representation of K in
terms of sparse matrices.

* This exact representation is built in terms of a change-of-basis
transformation.

10
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.I Definition of KPs

* Preliminary

Definition. Given a correlation function K(-,-) and input points
x; < - < X, anon-zero function ¢ ( - ) Is called a Kernel Packet
(KP) of degree k, If it admits the representation
k
¢(-) =Z_ 1AjK("xj)'
]:
and the support of ¢ is x4, x;].

 Questions:
e How to construct KPs?
Do KPs exist?

11
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« How can KPs help with the computation?
» Toy Example: Construct KPs from a moving window of the data with k = 5

X1, X2, x3' X4, X5

J

y X6,) X7, X8, X9, X10

supported over [xq, xs]|

Constructa KP ¢p( - ) = ?zlAjK( - x,)

12
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« How can KPs help with the computation?
» Toy Example: Construct KPs from a moving window of the data with k = 5

X1,[X2, X3, X4, X5, Xg

) X7 x8' X9, xlO

J

supported over x5, x¢|

Constructa KP ¢( - ) = ]6-=2 AjK( - x,)
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« How can KPs help with the computation?
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» Toy Example: Construct KPs from a moving window of the data with k = 5

X1, X2,/X3, X4, X5, Xg, X7

|

y X8, X9, X10

supported over [x3, x-]

Constructa KP ¢( ) = X7_3 4K (-, x;),

14
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« How can KPs help with the computation?
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» Toy Example: Construct KPs from a moving window of the data with k = 5

X1,X2,X3,X4, X5, x6' X7,Xg

|

y X9, xlO

supported over [x,, xg]

Constructa KP ¢( ) = X8_, 4K (-, x;),

15
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.I Construct KPs

« How can KPs help with the computation?

» Toy Example: Construct KPs from a moving window of the data with k = 5
X1,X2,X3,X4,Xs5, X, x,7r Xgr Xg, X10

!

Constructa KP ¢( ) = X_s 4K ( -, x;),
supported over [xs, xo]

16
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.I Construct KPs

« How can KPs help with the computation?

» Toy Example: Construct KPs from a moving window of the data with k = 5
X1,X2,X3,X4,Xs5,Xe, X7, x8' X9, X10

|

Constructa KP ¢( ) = X312 4;K( -, x;),
supported over [xg, x10]

17
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.I Construct KPs

« How can KPs help with the computation?

» Toy Example: Construct KPs from a moving window of the data with k = 5
X1, X2, X3, X4, X5, X, X7, Xg, X9, X190

* We now have 6 KPs of degree k = 5, however, to construct a basis
of span{K( -, x;) %21, we should have 10 KPs.

« How to construct another 4 KPs, which are linear independent of
the existing 6 KPs.

 Construct 4 boundary KPs of degree less than k = 5:
2 left-sided KPs, 2 right-sided KPs

18
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.I Construct KPs

« How can KPs help with the computation?

» Toy Example: Construct KPs from a moving window of the data with k = 5
X1, X2, X3, X4, X5, X6, X7, Xg, X9, X10

d

Construct a left-sided KP ¢p( - ) = ?:1 AjK( - xj)
supported over [x4, x4]

19
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.I Construct KPs

« How can KPs help with the computation?

» Toy Example: Construct KPs from a moving window of the data with k = 5
X1, X2, x3l, X4, X5, X6, X7, X8, X9, X10

l

Construct a left-sided KP ¢(+) = ¥3_; A4K( -, x;),
supported over [x4, x3]

20
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.I Construct KPs

« How can KPs help with the computation?

» Toy Example: Construct KPs from a moving window of the data with k = 5
X1,X2,X3, X4, X5, Xg, X7, x8{x9' X10

J

Construct a right-sided KP ¢(-) = X312, A;K( -, x;),
supported over [x7, x1o]

21
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.I Construct KPs

« How can KPs help with the computation?

» Toy Example: Construct KPs from a moving window of the data with k = 5
X1,X2,X3, X4, X5, Xg, X7,Xg, X9, X1

ﬂ,

Construct a right-sided KP ¢(+) = X125 4;K( -, x;),
supported over [xg, x1¢]

22
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« How can KPs help with the computation?
» Toy Example: Construct KPs from a moving window of the data with k = 5

Construct a KP
¢(-) =
215-21 A]K( y ,.X'j),
supported over
[x1, Xs5]

<

v L Iy

X1,X2,X3,X4, X5} Xg, X7, Xg, X9, X1

Kemel Packet Basis with Degree k=5 Kemel Packet Basis with Degree k=T

e Given 1D input data x; < --- < x,,, we can find another basis of span{K( -, x;)}, called the KP basis,
which consists of n KPs for n inputs

« KP basis consists of (n — k + 1) Intermediate KPs (in red), (k — 1) /2 Left-sided KPs (in blue), and (k —
1)/2 Right-sided KPs (in green)
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 KPs do exist for Matérn correlations with

half-integer smoothness —Kemel Packt
 Matern-v correlation has a KP of degree -~ Component 2
2v + 2. " Component 4
« 2v + 2 is proved to be the lowest possible | oemeenenS)
degree. e T~

1 /

Qb() = AlK(', 331) ...+ A5K(', IL’5)

! 4 4

KP Component 1

Supported Supported over R \)k o D
over [xq, xs] LT,

Note: We shall denote k :== 2v + 2and use k A Matern 3/2 correlation can
to parametrize the Matern correlation. generate KP of degree 5.
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.I Existence of KPs

Paley-Wiener Theorem

If £ is continuous and of moderate decrease, f is the Fourier transform of f. Then,
f 1s an entire function of exponential type M, i.e. f is holomorphic on the whole
complex plane and there exists some constant C > 0 such that |f(z)| < CeM/?|

If and only If

f is supported in [-M, M].

Consider a small subset of one-dimensional training inputs 1. := [x1,...,2%] ' and a
Matern kernel K (-,-) of smoothness v and Iengthscale w

¢£B1k ZA K x]

@nverse Fourier Transform
Qba:l K {ZA exp{zx]z}} (QV/(,U + 2 ) (k—1)/2 — ’}/(Z)(C + Z2)—(k—1)/2

]1 25
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Note: (¢? + 22) =% ~1/2has poles at z = +ci, each with multiplicity (k — 1)/2

v(2)(? + 2%)~%*=1/2 js an entire function

Il

v(ci)

0,
7,( ) = 0,

152 (ei) =0,

y(—ci)

=0
v (—ci) =0

77 (—ci) = 0

g

—T1e nuit space of s |
(k — 1) X k linear
system Is one-
dimensional if x4, ..., xy
are distinct
U
For one small subset of
training Inputs x,.;, we
can obtain {4;}_, by
solving the corresponding

k
Z Aj:cé- exp{dcz;} =0,

7=1

1=0,...,(k—3)/2, § = +1

26
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* |[n a matrix form, the correlation matrix adm

INItIon

factorization according to KP def
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» Suppose K is a 1D Matern correlation with a half-integer smoothness,

e.g.,v =15,25,35, ..

* We prove that for any input points in 1D sorted in an increasing order,

the correlation matrix admit the factorization:

K=®A1,

where
* & is a banded matrix with bandwidth v — 1/2.
A iIs a banded matrix with bandwidth v + 1/2.

« Matrix inversion computed as
K™y = A(®@7'y),

The n X n matrix A is computed
by solving n (k — 1) X k linear
systems, each column of A
corresponds to the coefficients
solved by one linear system

The n X n matrix & is computed

by ® = KA

which takes only O(n) time and O(n) storage (assuming v is fixed)!

28
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Figure 3: Logarithm of MSE for predictions with Matérn-3/2 correlation function (left) and
Matérn-5/2 correlation function (middle) and logarithm of averaged computational
time (right). The 1aGP uses the Gaussian covariance family in both the left and the
middle figure. No results are shown for the cases when a runtime error occurs or the
prediction error ceases to improve.
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* propose a rapid and exact algorithm for one-
dimensional Gaussian process regression under Matérn
correlations with half-integer smoothness.

* The proposed algorithm only requires O (n) time and
O (n) storage

* The proposed method can be applied to some multi-
dimensional problems by using tensor product
techniques, including grid and sparse grid designs, and
their generalizations.
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Thank you!
Any Questions?
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