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Abstract18

The Madden–Julian Oscillation (MJO) is an influential climate phenomenon that plays a19

vital role in modulating global weather patterns. In spite of the improvement in MJO pre-20

dictions made by machine learning algorithms, such as neural networks, most of them cannot21

provide the uncertainty levels in the MJO forecasts directly. To address this problem, we22

develop a nonparametric strategy based on Gaussian process (GP) models. We calibrate23

GPs using empirical correlations and we propose a posteriori covariance correction. Nu-24

merical experiments demonstrate that our model has better prediction skills than the ANN25

models for the first five lead days. Additionally, our posteriori covariance correction extends26

the probabilistic coverage by more than three weeks.27

Plain Language Summary28

The Madden–Julian Oscillation, or MJO, is a significant weather pattern that affects29

weather, influencing rainfall, temperature, and even storm frequency and intensity. When30

the MJO is active, it can affect the weather globally. To better predict weather changes31

with 3-4 weeks in advance , we rely on the ability to predict the MJO’s activity. Data-driven32

methods such as the ones that rely on deep neural networks have been recently employed33

to make such predictions. By examining existing MJO patterns, neural networks attempt34

to predict upcoming ones. However, while neural networks are robust enough to predict the35

MJO’s activity, they do not provide confidence intervals for those predictions. To address36

this shortcoming, we use a model known as the “Gaussian process” or GP. This statistical37

tool is distinctive because it not only provides predictions but also quantifies the level of38

confidence in them.39

1 Introduction40

The Madden–Julian Oscillation (MJO) (Madden & Julian, 1971, 1972) is the dominant41

mode of intraseasonal variability of the tropics (Zhang, 2013). In the tropics, the MJO42

exerts its influence on weather and modulates cyclone activity (Maloney & Hartmann, 2000;43

Camargo et al., 2009) and El Nino Southern Oscillation (ENSO; Bergman et al., 2001;44

Lybarger & Stan, 2019). The MJO influence extends outside of the tropics and is one of the45

important sources of potential predictability on the subseasonal-to-seasonal (S2S) time scales46

in the extratropics (Stan et al., 2017). Originating in the equatorial Indian Ocean, the MJO47

propagates eastward along the equator alternating between phases of active and suppressed48

convection. Traditionally, the amplitude and phase of the MJO have been described by using49

various MJO indices derived from outgoing longwave radiation (OLR) alone (e.g., OLR MJO50

Index, OMI; real-time OLR MJO index, ROMI) or in combination with the zonal wind at51

850 hPa and 200 hPa (Real-time Multivariate MJO, RMM). The RMM index (Wheeler &52

Hendon, 2004) consists of a pair (in quadrature) of principal component (PC) time series53

known as RMM1 and RMM2 (RMM =
√

RMM12 +RMM22). RMM1 and RMM2 are the54

first two PCs of combined OLR and zonal winds in the lower (850 hPa) and upper (20055

hPa) troposphere averaged between 15S and 15N.56

Despite the MJO’s pivotal role in the climate system, significant gaps remain in our57

understanding of its underlying mechanisms. Consequently, climate models struggle to58

accurately reproduce the observed characteristics of the MJO (G. Chen et al., 2022), and59

forecast systems face limitations in predicting the MJO with skill beyond a two-week lead60

time (Kim et al., 2018; Lim et al., 2018; Kim et al., 2019).61

Recent advancements in machine learning (ML) applications in predicting geoscientific62

phenomena spanning from weather to climate (He et al., 2021; Molina et al., 2023) hold63

the promise of enhancing the skill of deterministic (Love & Matthews, 2009; Toms et al.,64

2019; Silini et al., 2021; Suematsu et al., 2022; Martin et al., 2022; Hagos et al., 2022)65

and probabilistic (Delaunay & Christensen, 2022) forecast of the MJO. Improvement in the66
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forecast skill has been achieved also by applying ML techniques for correcting the forecasts67

of dynamical models (Kim et al., 2021; Silini et al., 2022). The majority of ML models used68

for MJO prediction are based on artificial neural networks (ANNs). The work of Delaunay69

and Christensen (2022) uses deep convolutional neural networks (CNNs) to quantify the70

uncertainty. We note that the probabilistic method in (Delaunay & Christensen, 2022) is not71

fully data driven. A wide array of ANN architectures has been devised for MJO prediction72

models. Toms et al. (2019) employed two hidden layers comprising fully connected networks,73

while Love and Matthews (2009) and Martin et al. (2022) utilized a single hidden layer of74

fully connected networks. Suematsu et al. (2022) employed recurrent neural networks as a75

form of reservoir computing, whereas Silini et al. (2022) employed them as autoregressive76

neural networks.77

In terms of input variables, some of the ML models for MJO prediction utilize a selected78

set of atmospheric state variables, including the OLR and zonal winds, to predict one of79

the MJO indices (Toms et al., 2019; Delaunay & Christensen, 2022). Others focus solely80

on the atmospheric state variables required for constructing and predicting the MJO index81

(Martin et al., 2022). Certain models use the MJO index as both input and output (Love82

& Matthews, 2009; Suematsu et al., 2022; Silini et al., 2021, 2022) or combine it with other83

climate indices (Hagos et al., 2022). Some studies suggest that increasing the number of84

input variables can enhance MJO forecast skill. Nonetheless, models utilizing only the MJO85

index as a predictor exhibit comparable forecast skill, highlighting the significance of the86

ML model’s characteristics. Thus, the prediction of the MJO can be regarded as a non-87

parametric problem, while most existing ANN models fall under parametric ML techniques.88

An alternative avenue for exploration lies in Gaussian processes (GPs), which represent a89

nonparametric learning approach that could be harnessed for MJO prediction. The GP90

approach has been applied to modeling geophysical datasets such as the prediction of tide91

height (Roberts et al., 2013). However, this approach is not autoregressive.92

Currently, only one of the ML models proposed for MJO forecasting offers the capability93

to quantify the forecast uncertainty. The model developed by Delaunay and Christensen94

(2022) predicts both the forecast mean and variance of RMM indices, providing insight into95

forecast reliability by using a combined model- and data-driven strategy. The model assumes96

a bivariate Gaussian distribution on the CNN (LeCun et al., 1995). The CNN is trained by97

maximizing the log-likelihood for each of the forecast lead times. Specifically, the CNN input98

is a series of daily gridded maps that include zonal wind at 200 hPa and 850 hPa, OLR, sea99

surface temperature, specific humidity at 400 hPa, geopotential at 850 hPa, and downward100

longwave radiation at the surface; and the output is the mean and variance of the forecast101

of RMM1 and RMM2. The output variance represents the intrinsic chaotic (aleatoric)102

uncertainty in the prediction. In addition, the epistemic uncertainty is estimated by using a103

Monte Carlo dropout method to produce an ensemble of forecasts. We note, however, that104

this model assumes no correlation between RMM1 and RMM2 and relies only on the past105

day t to predict the mean and variance on day t+τ . It overlooks the lag correlation between106

RMM1 and RMM2 as outlined in CLIVAR (2009) and the potential influences of the values107

between day t and day t+τ on the day t+τ . Additionally, interpreting uncertainties derived108

from neural network (NN) models can be challenging because the influence of weights θ on109

the NNs is not always clear and NNs may not inherently reflect probabilities. Moreover, the110

quality of the uncertainty estimates provided by Monte Carlo dropouts depends on choices111

of architecture designs, and effective design of training procedures is necessary to obtain112

satisfactory results (Verdoja & Kyrki, 2020). Additionally, the recent short and medium113

range weather forecasting models such as FourCastNet (Pathak et al., 2022), GenCast (Price114

et al., 2023), and Aardvark (Vaughan et al., 2024) are not amenable for forecasting MJO.115

To address these gaps, we present a novel data-driven and autoregressive probabilistic116

model for forecasting the MJO amplitude and phase that depends only on the past MJO117

observations. This model harnesses the power of GPs, enabling us not only to make pre-118

dictions but also to quantify the inherent uncertainties associated with these forecasts. A119
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GP is an extension of the multivariate Gaussian distributions to infinite dimensions. In120

practical terms, this means that given an input vector, the process will return a probabil-121

ity distribution of the observation vector based on the input. As a result, GPs provide a122

natural way to quantify uncertainty in predictions. GPs offer greater interpretability and123

transparency compared to NNs. This clarity stems from the GP’s covraiance kernel, which124

provides more readily understandable insights into the model behavior than the complex125

array of parameters found in NNs (Stein, 1999; Myren & Lawrence, 2021). As statistical126

models, GPs provide insight into how predictions are made, and the covariance function of127

a GP reveals the relationships among input features and their impact on predictions. Fur-128

thermore, GPs typically involve fewer hyperparameters to tune when compared with NNs,129

leading to increased computational efficiency.130

Specifically, the contributions of this paper are as follows:131

• Introduction of a probabilistic framework for the MJO based on GP models that are132

trained using empirical correlations to improve forecast accuracy.133

• Development of a nonparametric strategy utilizing GP models to directly provide134

uncertainty levels in MJO forecasts that do not rely on ensemble prediction.135

• Proposal of a posteriori covariance correction extending probabilistic MJO coverage136

over three weeks.137

• Enhancement of interpretability and transparency compared to neural network mod-138

els, alongside improved computational efficiency due to fewer hyperparameters.139

The paper is organized as follows. In Section 2 we present the data utilized in this study140

and describe our methodology for forecasting the MJO. In Section 3 we elaborate on the141

metrics used for analyzing the performance of the proposed model compared to observations142

and dynamical forecast systems. Section 4 showcases the results we have obtained in this143

work. In Section 5 we discuss our findings and present directions for future work.144

2 Methodology145

2.1 Data146

The daily MJO RMM index dataset 1 used in the study is provided by the Bureau of147

Meteorology. RMM1 and RMM2 values are available from June 1, 1974, to the most recent148

date. Because of missing values before 1979, we select the January 1, 1979, to December149

31, 2023, range for our study. The dataset is divided into three subsets: i) the training set150

used to determine the parameters of the prediction and corresponding variance, January,151

1, 1979 to December 31, 2016; ii) the validation set used to obtain the corrected variance152

with increasing lags, January 1, 2007 to December 31, 2011; and iii) the test set used to153

verify the results, January 1, 2012 to December 31, 2023. The start of predictions in the154

validation set (tv = Jan–01–2007) and test set (t0 = Jan–01–2012) are part of the model155

input. The training dataset is further divided into n = 10, 000 samples of length L = 40, 60156

days.157

2.2 GP model158

In this work we obtain the probability distribution of predicted RMM indices. The159

entire algorithm for our method is described in the diagram shown in Figure 1. The details160

related to time series prediction and Gaussian process are provided in Appendix A and the161

mathematical framework of the proposed method in Appendix B.162

1 http://www.bom.gov.au/climate/mjo/graphics/rmm.74toRealtime.txt
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Figure 1. Flowchart of the entire algorithm. Top: Diagram of the GP model for the MJO

forecast. The blue arrows indicate the order of operations in the algorithm. t∗ represents the

predicted timestamp, Bias2 is the square of the bias between the predicted values and the true

observations. Bottom: Iterated method for the multistep time series forecasting for two outputs

with lag = L, lead time = τ (τ > L). z
(1)
t , z

(2)
t are the values of RMM1 and RMM2 at time t. The

green arrows indicate one-day-ahead predictions. The red arrows indicate the moving window of

the predictors. Including the predictions from the previous step as predictors in the current step is

indicated by the pink arrow. See Appendix B for more details.

We denote the values of RMM1 and RMM2 on the tth day by z
(1)
t and z

(2)
t , respectively.163

As shown by the diagram in Fig. 1, the input to the GP model is a contiguous time series164

of RMM1 and RMM2 of length L (blue rectangles). L is referred to as lag in days and165

corresponds to T1 = T2 = L in Appendix A. The goal of this work is to obtain the predictive166

distribution of the vector [z
(1)
t , z

(2)
t ]⊤ (yellow rectangles) at the next τ times conditioned on167
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the previous L days:168

p
( [z(1)L+1:L+τ

z
(2)
L+1:L+τ

]∣∣∣∣∣
[
z
(1)
1:L

z
(2)
1:L

]
; Θ
)
, (1)169

where Θ is the parameter of the distribution. We will model [z
(1)
t , z

(2)
t ]⊤ as a bivariate GP.170

The model employs a classical regression algorithm based on one-step-ahead Gaussian171

process predictions. The one-step-ahead approach involves making predictions at step k172

using all available information up to step k−1. This information is assumed to be Gaussian173

(normal) distributed. A Gaussian process (GP) is a collection of random variables, such174

that any finite set of which has multivariate Gaussian distribution (Williams & Rasmussen,175

2006). A GP is specified by two functions: the mean function µ(·) and the covariance176

function K(·, ·). The mean function represents the expected value of the process at any177

given time. It provides a baseline prediction and captures the trend of the timeseries. The178

covariance function, also known as the kernel, describes how points in the time series are179

related to each other. It captures the periodicity and other patterns in the data as well as180

the uncertainties in the time series. Using the GP model, the time series of RMM1 and181

RMM2 can be modeled as:182

f(Z) ∼ N (µ(Z),K(Z,Z ′)), (2)183

where Z =

[
z
(1)
t

z
(2)
t

]
=

[
RMM1(t)
RMM2(t)

]
, and Z ′ =

[
z
(1)
t′

z
(2)
t′

]
=

[
RMM1(t′)
RMM2(t′)

]
, f(Z) is the bivariate184

time series of RMMs, where t, t′ represent all the time indexes in the series.185

During the training, the model takes as input n overlapping batches of RMM1 and186

RMM2 indices, each of length L. The training data is then divided into an input subset187

X(1:2) = [X(1);X(2)] and an output subset y(1:2) = [y(1);y(2)], each of length 2L. These sub-188

sets are used to estimate an empirical mean by the average of the corresponding subsets. The189

empirical covariance function is estimated by partitioning the training data into four blocks190

that represent the covariance between all inputs Cov[X(1:2),X(1:2)], covariance between all191

outputs Cov[y(1:2),y(1:2)], cross-covariance between inputs and outputs Cov[X(1:2),y(1:2)],192

and cross-covariance between outputs and inputs Cov[y(1:2),X(1:2)]. The cross- and auto-193

covariance of the RMMs is modeled using a cubic spline interpolation of the cross- and194

auto-correlations of the indices, shown in Figure 2.195

During the validation, the empirical mean and covariance are used to predict the poste-196

rior mean µt∗ and covariance Kt∗ at time t∗. The details of these calculations are provided197

in the Appendix B1. As the one-step-ahead prediction is iterated forward, the last pre-198

diction becomes input for the next prediction (the red dashed rectangle). Therefore, when199

predictions are carried out into the future, “observations” are replaced by the predictions.200

As the prediction window moves farther ahead of the start time, more and more components201

of the input vectors are replaced by GP predictions. This process introduces systematic un-202

certainties because the covariance is related only to the lag value L and not to the lead203

time τ of the prediction or the predictor values. At leads beyond L the predictive vari-204

ance should increase because of the uncertainties introduced by replacing observations with205

predicted values. The covariance function must be corrected to account for the additional206

uncertainty. We design the correction by computing the average variance bias between the207

posterior mean and true observations. This bias is then added to the covariance function208

at each forecast lead time to obtain the modified posterior covariance K̃t∗(τ). The details209

of these calculations are provided in the Appendix B2.210

One important element of the GP model is the confidence interval of the forecast, which211

is the confidence region of the normal distribution characterized by the posterior mean and212

corrected covariance function. Johnson et al. (2002) have shown that (1 − α) confidence213

region of the p-variate (or multivariate) normal distribution is a hyperellipsoid bounded by214

chi-square distribution with p degrees of freedom at the level α. Since RMMs are bivariate215

time series, here p = 2 in our GP model. Therefore, the ellipsoid of the (1− α) confidence216
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Figure 2. Cross-correlations and auto-correlations of RMMs with maximum lag = 60 days.

region for the GP model is centered on the posterior mean with the axes ±χ2(α)
√
λiei,217

i = 1, 2, where {λi}2i=1 and {ei}2i=1 are the eigenvalues and eigenvectors of the corrected218

covariance K̃t∗(τ).219

A limitation of this confidence interval estimation is that it relies on normality assump-220

tions; nevertheless, due to its relatively smooth behavior, it is a reasonable assumption,221

which is also supported by our numerical results.222

3 Metrics223

We will use two different types of quantitative metrics to analyze the performance of224

our models.225

3.1 Deterministic prediction skill226

For the deterministic prediction skill, we use the predictive mean of the GP model,227

obtained from equation (B3), as the RMM predictions, denoted by (ẑ
(1)
t , ẑ

(2)
t ) in the sub-228

sequent equations. The performance of the model is measured by the bivariate correlation229

coefficient (COR) and root mean squared error (RMSE) defined as follows:230

COR(τ) =

∑np

t=1

(
z
(1)
t ẑ

(1)
t (τ) + z

(2)
t ẑ

(2)
t (τ)

)√∑np

t=1

((
z
(1)
t

)2
+
(
z
(2)
t

)2)√∑np

t=1

((
ẑ
(1)
t (τ)

)2
+
(
ẑ
(2)
t (τ)

)2) , (3)231

232

RMSE(τ) =

√√√√ 1

np

np∑
t=1

((
z
(1)
t − ẑ

(1)
t (τ)

)2
+
(
z
(2)
t − ẑ

(2)
t (τ)

)2)
, (4)233

where z
(1)
t and z

(2)
t are the observations of RMM1 and RMM2 on the tth day in the test234

set, ẑ
(1)
t (τ) and ẑ

(2)
t (τ) are the predictions of RMM1 and RMM2 on the tth day in the test235

set for the lead time of τ days, and np is the number of the predictions.236

We also analyze the phase error Eϕ and the amplitude error EA of RMMs defined as237

Eϕ(τ) =
1

np

np∑
t=1

(
P̂t(τ)− Pt

)
, (5)238

239

EA(τ) =
1

np

np∑
t=1

(
Ât(τ)−At

)
, (6)240

where Pt is the angle in degrees (0◦ − 360◦) of the observation of RMMs (z
(1)
t , z

(2)
t ) on241

the tth day in the test set, P̂t(τ) is the angle in degrees (0◦ − 360◦) of the predictions242

of RMMs (ẑ
(1)
t (τ), ẑ

(2)
t (τ)) on the tth day in the test set for the lead time of τ days.243

At is the observation of RMM amplitude on the tth day in the test set, and Ât(τ) : =244
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√(
ẑ
(1)
t (τ)

)2
+
(
ẑ
(2)
t (τ)

)2
is the predicted amplitude on the tth day in the test set for the245

lead time of τ days. The evaluation is conducted for two values of the lag, L = 40, 60, size246

of the training set n = 10000, size of the validation set nv = 2000, number of predictions247

for computing the errors np = 528, and forecast lead time τ = 1, 2, . . . , 60.248

To better visualize the skill of the model for the MJO phase, we also assess the model’s249

skill by the Heidke skill score (HSS) (Heidke, 1926) defined in equation (13).250

HSS is a measure of how well a forecast is relative to a randomly selected forecast. HSS251

plays a crucial role in evaluating the accuracy of deterministic forecasts. The definition of252

HSS (Hyvärinen, 2014) is given by253

HSS =
PC− E

1− E
=

2(ad− bc)

(a+ b)(b+ d) + (a+ c)(c+ d)
, (7)254

where a, b, c, d are different numbers of cases observed to occur in each category in the255

contingency table (see Table 1); PC is the proportion correct defined as256

PC =
a+ d

a+ b+ c+ d
; (8)257

E is the expectation of the probability of the correct forecasts defined as258

E = p({zt ∈ A, ẑt ∈ A}∪{zt /∈ A, ẑt /∈ A}) = p(zt ∈ A)p(ẑt ∈ A)+p(zt /∈ A)p(ẑt /∈ A); (9)259

and its maximum-likelihood estimate is given by260

E =
( a+ c

a+ b+ c+ d

)( a+ b

a+ b+ c+ d

)
+
( b+ d

a+ b+ c+ d

)( c+ d

a+ b+ c+ d

)
. (10)261

To combine the strong/weak MJO and 8 phases, we divide the plane into 9 parts and

# of cases
Observation zt ∈ A

True False

Forecast ẑt ∈ A
True a (true positive/hit) b (false positive/false alarm)
False c (false negative/miss) d (true negative/correct rejection)

Table 1. Contingency table

262

introduce phase 0 (inactive MJO) by defining {Ai}8i=0 as follows:263

(z
(1)
t , z

(2)
t ) ∈ A0 ⇐⇒

√
(z

(1)
t )2 + (z

(2)
t )2 < 1, (11)264

265

(z
(1)
t , z

(2)
t ) ∈ Ai (i = 1, . . . , 8) ⇐⇒

{
atan2(z

(2)
t , z

(1)
t ) ∈ (−π,− 3

4π] +
π
4 (i− 1)

and

√
(z

(1)
t )2 + (z

(2)
t )2 ≥ 1,

(12)266

where (z
(1)
t , z

(2)
t ) are the observations of (RMM1, RMM2) at time t and atan2 is the 2-267

argument arctangent function whose range is (−π, π]. For the strong/weak MJO (i = 0)268

and each MJO phase i (i = 1, . . . , 8), we can calculate the corresponding HSS(i) by setting269

A : = Ai in equations (11) and (12) and applying them to A in Table 1. Hence,270

HSS(i) =
2(aidi − bici)

(ai + bi)(bi + di) + (ai + ci)(ci + di)
, (13)271

where ai = card
(
t
∣∣∣ (z(1)t , z

(2)
t ) ∈ Ai and (ẑ

(1)
t , ẑ

(2)
t ) ∈ Ai

)
; bi = card

(
t
∣∣∣ (z(1)t , z

(2)
t ) /∈272

Ai and (ẑ
(1)
t , ẑ

(2)
t ) ∈ Ai

)
; ci = card

(
t
∣∣∣ (z(1)t , z

(2)
t ) ∈ Ai and (ẑ

(1)
t , ẑ

(2)
t ) /∈ Ai

)
; di =273

–8–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

card
(
t
∣∣∣ (z(1)t , z

(2)
t ) /∈ Ai and (ẑ

(1)
t , ẑ

(2)
t ) /∈ Ai

)
, i = 0, 1, . . . , 8; (z

(1)
t , z

(2)
t ) are the observa-274

tions of (RMM1, RMM2) at time t; and (ẑ
(1)
t , ẑ

(2)
t ) are the predictions of (RMM1, RMM2)275

at time t. Note that card (·) denotes the cardinality of the set, which is the number of276

elements in the set. In our case, it represents the number of days t where the corresponding277

condition is met.278

3.2 Probabilistic prediction skill279

The probabilistic nature of the GP model allows a natural evaluation of the probabilistic280

skill of the MJO prediction. We assess the model using two probabilistic scores: continuous281

ranked probability score (CRPS) (Hersbach, 2000) and the ignorance score (Roulston &282

Smith, 2002).283

CRPS is a scoring rule that compares a single ground truth value to a cumulative284

distribution function, first introduced in (Matheson & Winkler, 1976) and widely used in285

weather forecasts. It is defined as286

CRPS(FD, y) =

∫
R

(
FD(x)−H(x ≥ y)

)2
dx, (14)287

where FD is the cumulative distribution function of the forecasted distribution D, H is the288

Heaviside step function and y ∈ R is the observation. We assume the forecasted distribution289

D is Gaussian distribution, then the CRPS formula is given by290

CRPS(N (µ, σ2), y) = σ

(
ω(2Φ(ω)− 1) + 2ϕ(ω)− 1√

π

)
, ω =

y − µ

σ
, (15)291

where Φ(·) and ϕ(·) are cumulative distribution function and probability density functions292

of the standard normal distribution N (0, 1). The CRPS for MJO is then computed as the293

sum of the CRPS for RMM1 and RMM2 following (Marshall et al., 2016).294

The log-likelihood of the normal distribution is used to compute the ignorance score,295

which is given as follows:296

L(τ) = 1

np

np∑
t=1

−1

2

log(2π) + log |Σt(τ)|+

[
z
(1)
t − ẑ

(1)
t (τ)

z
(2)
t − ẑ

(2)
t (τ)

]⊤
Σt(τ)

−1

[
z
(1)
t − ẑ

(1)
t (τ)

z
(2)
t − ẑ

(2)
t (τ)

] ,

(16)297

where Σt(τ) ∈ R2×2 is the covariance matrix of the predictions of RMM1 and RMM2 on298

the tth day for the lead time of τ days, and |Σt(τ)| is the determinant of the covariance299

matrix Σt(τ).300

4 Results301

In this section we present the results of the prediction skill of our model in Section 4.1,302

the results of HSS for each MJO phase over the forecast lead time in Section 4.2, and the303

visualizations of the uncertainty quantification with the GP model in Section 4.3.304

4.1 Prediction skill305

Figure 3 presents the results of the prediction skill and errors of the GP model compared306

to the sub-seasonal to seasonal prediction project (S2S) models, including the European Cen-307

ter for Medium-Range Weather Forecasts (ECMWF) with 35 forecast lead days, Bureau of308

Meteorology (BOM) with 62 lead days, and Centre National de Recherche Météorologiques309

(CNRM) with 60 lead days. The metrics are calculated from predictions made on different310

days for each model, as the S2S models are initialized on different dates. We calculated311

the metrics for the GP model and ECMWF over the same period from January 3, 2012, to312

January 10, 2017, and for the BOM and CNRM models over the same period from January313
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Figure 3. Prediction skill quantifiers and errors of the GP model with lag L = 40, 60, respec-

tively, compared to three models in the sub-seasonal to seasonal prediction project (S2S). Top:

COR, RMSE, and phase error (degress) over 528 predictions. Bottom: Amplitude error, CRPS,

and ignorance score (log-likelihood) over 528 predictions. Red lines and orange lines represent the

GP model with lag L = 40 and L = 60 respectively, green lines represent the European Center

for Medium-Range Weather Forecasts (ECMWF), blue lines represent the Bureau of Meteorology

(BOM), purple lines represent the Centre National de Recherche Météorologiques (CNRM).

1, 1993, to December 15, 2014. The values COR = 0.5 and RMSE = 1.4 are the commonly314

used skill thresholds for a climatological forecast (Rashid et al., 2011). In this figure we315

see that our model has a prediction skill of 12 days for both lag L = 40 and L = 60 with316

threshold COR = 0.5. The ECMWF model demonstrates the best overall performance for317

COR. While the GP model performs best during the first three forecast lead days, it de-318

clines rapidly and eventually reaches similar COR values as the BOM and CNRM models.319

Regarding the RMSE, the prediction skill is longer than 60 days for L = 40 and L = 60 with320

threshold RMSE = 1.4. The GP model has a much lower RMSE than S2S models during321

the first three forecast days, then RMSE increases to values larger than in ECMWF over322

the next 20 lead days. It eventually stabilizes around RMSE = 1.25, outperforming BOM323

and CNRM across the full 60 forecast lead days. The fast decline of COR for the GP model324

is due to the fact that we use the empirical correlations from historical RMMs of large size325

in our model. Specifically, when the forecast lead time increases, the predicted RMMs will326

become smaller and smoother because of the empirical correlations over a long period of327

time, giving rise to the smaller variations of RMMs than the true observations and therefore328

a lower COR. The small value of the predicted RMMs also accounts for the tiny changes in329

RMSE after day 24 of the forecast lead time. As for the phase error (the angle of RMMs330

in degrees), we observe that most phase errors for the GP model are positive and larger331

than ECMWF and CNRM, indicating a faster propagation relative to the observations. For332

the amplitude errors, we note that all of them are negative. Because of the smaller values333

of the predicted RMMs of the GP model with forecast lead time increasing, the amplitude334

is underestimated, resulting in negative and worse amplitude errors than S2S models. The335

GP model performs worse than the S2S models in terms of probabilistic skill, as measured336

by CRPS and the ignorance score (log-likelihood). This is due to the larger variances in the337

GP model, causing its probability distribution to diverge significantly from the observations.338
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We also note that the results with lags L = 40 and L = 60 are similar; therefore, for the339

rest of the paper we will show only results with lags L = 40.340

4.2 HSS341

Figure 4. HSS heatmap for the GP model over 528 predictions with lag L = 40. The cells with

black cross marker “X” represent the significant samples from Fisher’s exact test with the critical

value α = 0.05.

Figure 4 shows the HSS heatmap for the combination of phases (1–8) and inactive342

(weak) MJO for the forecast lead times (1–40 days) over 528 predictions. From this figure343

we can see that our model has a positive skill for most phases and forecast lead times and344

has high skill scores for the first 10 forecast lead days for all 8 phases and inactive MJO.345

We also use Fisher’s exact test (Fisher, 1922) with critical value α = 0.05 to determine the346

significant samples for HSS. The cells with the black cross marker in Figure 1 indicate the347

statistically significant associations between observations and forecasts, which is consistent348

with the results of Section 4.1 indicating that the model has a good prediction skill within349

the first 12 days of the forecast lead time. The results reported above provide better skill350

than the ANN model results reported by (Kim et al., 2021) for the first five forecast lead351

days in terms of correlation coefficient and overall in terms of root mean square error.352

4.3 Uncertainty quantification353

Here we pick two samples (Nov–03–2012 to Jan–01–2013, Jan–14–2013 to Mar–14–354

2013) out of np = 528 predictions with τ = 60 forecast lead days to present the uncertainty355

quantification of the predicted MJO. We compare the GP model with the ECMWF ensemble356

means, including standard deviations from 11 members, which performs best among the S2S357

models, as well as with observations from BOM. Figure 6 shows an example in which the358

MJO is mostly inactive within 60 days, and Figure 7 shows an example of an active MJO359

event. These two examples show that predictions of the GP model capture the general360

trend seen in observations and outperforms ECMWF during the first 5 lead days. The ±σ361
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confidence intervals (CI) grow as the forecast lead time increases and cover a larger portion362

of the observation range compared to the ECMWF model’s CI. To obtain the complete363

picture of MJO prediction, we summarize results in Figure 5, which shows the MJO phase364

diagram for Nov–03–2012 to Jan–01–2013 and Jan–14–2013 to Mar–14–2013 of our model365

with 68.0% confidence region. The figure clearly shows that almost all observations (black366

lines) mostly lie within the confidence region (colorful shadings), which demonstrates the367

quality of the uncertainty quantification of our model. Animated phase diagrams can also be368

found on the project website https://gp-mjo.github.io/, which show how the elliptical369

confidence region enlarges with time.

Figure 5. Left: 60-days MJO phase diagram for Nov–03–2012 to Jan–01–2013 with lag L = 40.

Black lines are observations (truth). Olive lines are predictions in November, and olive shadings are

68% confidence regions (CR) in November. Dark blue lines are predictions in December, and dark

blue shadings are CR in December. Red lines are predictions in January, and red shadings are CR

in January. Right: 60-days MJO phase diagram for Jan–14–2013 to Mar–14–2013 with lag L = 40.

Black lines are observations (truth). Red lines are predictions in January, and red shadings are CR

in January. Purple lines are predictions in February, and purple shadings are CI in February. Cyan

lines are predictions in March, and cyan shadings are CR in March.

370

5 Conclusions371

In this study we have developed a robust, probabilistic, data-driven model to predict372

the MJO with high accuracy and quantify prediction uncertainty using GPs with empirical373

correlations. Our methodology primarily focused on employing the daily RMM index dataset374

from January 1, 1979, to December 31, 2023, to train, test, and validate the model. We375

have successfully demonstrated that our model’s mean prediction of the daily RMM index376

remains accurate within a 12-day forecast window, as evidenced by our evaluations using377
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Figure 6. 60-days time series of MJO for Nov–03–2012 to Jan–01–2013 for lag L = 40, 60. We

denote observations (truth) from the BOM by black dots; predictions of the GP model for lag

L = 40 and L = 60 by blue cross and orange cross, respectively; ±σ CI of the GP model for lag

L = 40 and L = 60 by blue shading and orange shading, respectively; predictions of the ECMWF

model by green dots, ±σ CI of the ECMWF model by green shading. Top left : Time series of

RMM1. Top right : Time series of RMM2. Bottom left : Time series of phase (angle in the degrees).

Bottom right : Time series of amplitude.

metrics including the correlation, RMSE, phase errors, amplitude errors, CRPS, ignorance378

score, and the HSS.379

The specific aspect that provides the model’s efficacy lies in the approach used to handle380

GPs for time series prediction and uncertainty quantification. We avoid the typical need for381

optimizing hyperparameters, thus streamlining the process and enhancing the model’s effi-382

ciency and stability. This approach is driven by using training data to empirically determine383

covariance, which is then fitted to a continuous function. The advantage of this method is384

twofold. It offsets the need for external hyperparameters and ensures stability, especially385

for long-term predictions, where the model reverts to the mean or prior. Furthermore, our386

model is robust to the lags of predictors, maintaining accuracy and reliability in predictions387

without being significantly impacted by lag beyond a certain threshold. This characteristic388

is especially notable in the context of long-term forecasting and in scenarios where data389

input may be subject to variable delays.390
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Figure 7. 60-days time series of MJO for Jan–14–2013 to Mar–14–2013 for lag L = 40, 60.

We denote observations (truth) from the BOM by black dots; predictions of the GP model for lag

L = 40 and L = 60 by blue cross and orange cross, respectively; ±σ CI of the GP model for lag

L = 40 and L = 60 by blue shading and orange shading, respectively; predictions of the ECMWF

model by green dots, ±σ CI of the ECMWF model by green shading. Top left : Time series of

RMM1. Top right : Time series of RMM2. Bottom left : Time series of phase (angle in the degrees).

Bottom right : Time series of amplitude.

Moreover, our prediction also provides uncertainty bounds. The uncertainty in our391

method is state-independent, meaning it is unrelated to the initialized MJO event and392

depends solely on lead time. The probabilistic model’s confidence region covers the obser-393

vations well, maintaining an average coverage of close to 60 days. This aspect is crucial394

for reliable forecasting in dynamic and uncertain climatic conditions governed by the MJO.395

Assuming that the dynamic model fit through a Gaussian process is optimal, this study396

indeed suggests that the limit of predictability of RMM1 and RMM2 based on their history397

alone is constrained to the results presented in this paper. Furthermore, it indicates that398

the memory of the dynamical system, based on these inputs, is limited to about 40 to 60399

days in the past.400

The approach proposed in this study can be improved by including aspects of seasonal401

variability and adding additional predictors. In our future work we aim to mitigate these402

limitations by incorporating seasonal factors into the model and expanding the range of403

physical variables in the inputs. These aspects are expected to improve our GP model404

performance significantly. Additionally, while effective, our current empirical approach to405
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constructing GPs could be further advanced by exploring parametric methods in model-406

ing GPs. This future direction could potentially offer more nuanced insights and greater407

precision in our predictions.408

In summary, this study introduces a new data-driven method for predicting the MJO,409

providing a reliable, efficient, and robust model that provides competitive accuracy and410

offers extensive insight into prediction uncertainties. As we move forward, our focus will be411

on refining and enhancing this model to address its current limitations and adapt it to the412

challenges in climatic forecasting.413

Appendix A Background414

In this section we review the probabilistic forecasting and the iterative method for the415

time series forecasting in Section A1 and GP models in Section A2.416

A1 Probabilistic forecasting with an iterative method417

In the general probabilistic forecasting problem (Rangapuram et al., 2018; Wang et418

al., 2019), we usually denote M univariate time series by {z(j)1:Tj
}Mj=1, where z

(j)
1:Tj

: =419

(z
(j)
1 , z

(j)
2 , . . . , z

(j)
Tj

) is the jth time series and z
(j)
t is the value of the jth time series at420

time t, 1 ≤ t ≤ Tj . Our goal is to model the distribution of z
(j)
Tj+1:Tj+τ at the next τ time421

conditioned on the past:422

p(z
(j)
Tj+1:Tj+τ

∣∣∣ z(j)1:Tj
; Θ), j = 1, . . . ,M, (A1)423

where Θ is the set of the learnable parameters shared by all M time series.424

The objective of multistep time series forecasting (Weigend, 2018; Cheng et al., 2006;425

Sorjamaa et al., 2007) is to predict M -variate time series at the next τ time {z(j)Tj+1:Tj+τ}Mj=1426

given {z(j)1:Tj
}Mj=1, where τ > 1. A multistep prediction is typically carried out using the427

iterative method. In this technique, the values computed for each step ahead are sent to428

the next step as inputs. The iterative method can be written in the autoregressive model429

as follows:430 
z
(1)
t
...

z
(M)
t

 =


f1(z

(1)
t−T1:t−1)
...

fM (z
(M)
t−TM :t−1)

 , (A2)431

where f1, . . . , fM are random functions. After the learning process, the predicted values at432

the next τ time are given by433

ẑ
(j)
t+τ−1 =


fj(z

(j)
t−Tj :t−1) if τ = 1

fj(z
(j)
t−Tj−1+τ :t−1, ẑ

(j)
t:t−2+τ ) if τ = 2, . . . , Tj

fj(ẑ
(j)
t−Tj−1+τ :t−2+τ ) if τ = Tj + 1, . . .,

(A3)434

where j = 1, . . . ,M , ẑ
(j)
t is the predicted value of the jth sequence of time series at time435

t. The lower diagram in Figure 1 illustrates the case where M = 2, T1 = T2 = L for the436

iterated method. The iterated method has also been applied to many classical machine437

learning models such as recurrent neural networks (Medsker & Jain, 2001; Galván & Isasi,438

2001; Yunpeng et al., 2017) and hidden Markov models (Rabiner & Juang, 1986; Rossi &439

Gallo, 2006; Horelu et al., 2015).440

A2 Gaussian processes441

A Gaussian process (Williams & Rasmussen, 2006) is a collection of random variables442

such that every finite number of which has a multivariate normal distribution. A GP443
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is defined by a mean function µ(·) and a covariance function K(·, ·) and is denoted by444

GP(µ(·),K(·, ·)).445

Given a dataset D = {X,y} comprising the inputs X = {xi}ni=1 (where xi ∈ Rd) and446

the corresponding observations y = (y1, y2, . . . , yn)
⊤ (where yi ∈ R), suppose yi = f(xi),447

where f : Rd → R is a random function. Gaussian process regression assumes that the448

unknown function is a prior GP, denoted as f(·) ∼ GP(µ(·),K(·, ·)). Then the posterior449

distribution at a set of test points X∗ = {x∗
i }mi=1 (where x∗

i ∈ Rd) has the following form:450

p(f(X∗)| D) = N (E[f(X∗)|D],Cov[f(X∗)|D]), (A4)451

with the posterior mean and covariance as follows:452

E[f(X∗)|D] = µ(X∗) +K(X∗,X)
[
K(X,X)

]−1
(y − µ(X)) , (A5a)453

Cov[f(X∗)|D] = K(X∗,X∗)−K(X∗,X)
[
K(X,X)

]−1
K(X,X∗). (A5b)454

455

Appendix B Algorithm456

B1 Empirical GPs for the bivariate time series457

Here we denote the bivariate time series of RMMs by {z(j)t }Tt=1, j = 1, 2, · · · , T , where458

T is the length of the entire time series. As before we assume that we model the two time459

series by a joint GP:460

[
z
(1)
t

z
(2)
t

]
∼ GP

(
µ
( [z(1)t

z
(2)
t

] )
,K
( [z(1)t

z
(2)
t

]
,

[
z
(1)
t′

z
(2)
t′

] ))
. (B1)461

We seek to calculate the distribution of the two components at the next time step conditioned462

on the previous L values. In other words, we need to calculate the predictive distribution463

of [z
(1)
t , z

(2)
t ]⊤ at time t∗ for the lag L, which is expressed as464

p
( [z(1)t∗

z
(2)
t∗

]∣∣∣∣∣
[
z
(1)
t∗−L:t∗−1

z
(2)
t∗−L:t∗−1

])
= N (µt∗ ,Kt∗), . (B2)465

The predictive mean and covariance, µt∗ ∈ R2×1, Kt∗ ∈ R2×2, are estimated by following466

(B3) and (B4):467

µt∗ = E
[ [

z
(1)
t∗

z
(2)
t∗

]∣∣∣∣∣
[
z
(1)
t∗−L:t∗−1

z
(2)
t∗−L:t∗−1

] ]
468

= E
[ [

z
(1)
t∗

z
(2)
t∗

] ]
+Cov

[ [
z
(1)
t∗

z
(2)
t∗

]
,

[
z
(1)
t∗−L:t∗−1

z
(2)
t∗−L:t∗−1

] ]
469

Cov
[ [z(1)t∗−L:t∗−1

z
(2)
t∗−L:t∗−1

]
,

[
z
(1)
t∗−L:t∗−1

z
(2)
t∗−L:t∗−1

] ]−1
([

z
(1)
t∗−L:t∗−1

z
(2)
t∗−L:t∗−1

]
− E

[ [z(1)t∗−L:t∗−1

z
(2)
t∗−L:t∗−1

] ])
470

≈ E
[ [y(1)

y(2)

] ]
+Cov

[ [y(1)

y(2)

]
,

[
X(1)

X(2)

] ]
471

Cov
[ [X(1)

X(2)

]
,

[
X(1)

X(2)

] ]−1
([

z
(1)
t∗−L:t∗−1

z
(2)
t∗−L:t∗−1

]
− E

[ [X(1)

X(2)

] ])
, (B3)472

473
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474

Kt∗ = Cov
[ [

z
(1)
t∗

z
(2)
t∗

]∣∣∣∣∣
[
z
(1)
t∗−L:t∗−1

z
(2)
t∗−L:t∗−1

] ]
475

= Cov
[ [

z
(1)
t∗

z
(2)
t∗

]
,

[
z
(1)
t∗

z
(2)
t∗

] ]
− Cov

[ [
z
(1)
t∗

z
(2)
t∗

]
,

[
z
(1)
t∗−L:t∗−1

z
(2)
t∗−L:t∗−1

] ]
476

Cov
[ [z(1)t∗−L:t∗−1

z
(2)
t∗−L:t∗−1

]
,

[
z
(1)
t∗−L:t∗−1

z
(2)
t∗−L:t∗−1

] ]−1

Cov
[ [z(1)t∗−L:t∗−1

z
(2)
t∗−L:t∗−1

]
,

[
z
(1)
t∗

z
(2)
t∗

] ]
477

≈ Cov
[ [y(1)

y(2)

]
,

[
y(1)

y(2)

] ]
− Cov

[ [y(1)

y(2)

]
,

[
X(1)

X(2)

] ]
478

Cov
[ [

X(1)

X(2)

]
,

[
X(1)

X(2)

] ]−1

Cov
[ [

X(1)

X(2)

]
,

[
y(1)

y(2)

] ]
, (B4)479

480

where481

X(j) =


z
(j)
1:L

z
(j)
2:L+1
...

z
(j)
n:L+n−1


⊤

∈ RL×n, y(j) =


z
(j)
L+1

z
(j)
L+2
...

z
(j)
L+n


⊤

∈ R1×n, j = 1, 2, (B5)482

and483

X(1:2) :=

[
X(1)

X(2)

]
∈ R2L×n, y(1:2) :=

[
y(1)

y(2)

]
∈ R2×n. (B6)484

In equations (B3) and (B4) we use the empirical mean and covariance of n batches of485

training data with lag L to approximate the expectation of the target and the covariance of486

the target and predictors.487

B2 Covariance update488

The forecast lead time is reached by repeated one-step predictions. Therefore, the489

covariance Kt∗ in equation (B4) is related only to the value of lag L, which is 40 or 60 in490

our study and is unrelated to the lead time τ or the predictor values. However, as we predict491

for longer lead times, the predictive variance should increase because of the uncertainties492

introduced by replacing observations by predicted values. To account for this additional493

uncertainty, we propose the following covariance correction. For each lead time we use a494

validation set of size nv(L) with lag L to compute the averaged variance bias between the495

posterior mean and true observations. Hence, the corrected variance Ṽ
(j)
∗ (τ) is given by496

Ṽ
(j)
∗ (τ) := Var[z

(j)
t∗ (τ)] ≈ Var[ẑ

(j)
t∗ (τ)] + Bias

(
ẑ
(j)
t∗ (τ), z

(j)
t∗ (τ)

)2
,

≈ Kt∗ [j, j] +
1

nv

nv∑
t=1

(
ẑ
(j)
t (τ)− z

(j)
t (τ)

)2
,

(B7)497

where ẑ
(j)
t∗ (τ) is the predicted value for lead time τ obtained by the above iteration, z

(j)
t∗ (τ)498

is the corresponding true observation, and Kt∗ [j, j] is the [j, j]th entry of the covariance499

matrix Kt∗ , j = 1, 2. Then we scale the Kt∗ to the corrected covariance K̃t∗(τ) for lead500

time τ in (B8) by using the variances {Ṽ (j)
∗ (τ)}2j=1. Therefore, the corrected covariance501

K̃t∗(τ) corresponds to the lead time τ and can be scaled via the following transformation:502

Kt∗ =

[
Kt∗ [1, 1] Kt∗ [1, 2]
Kt∗ [2, 1] Kt∗ [2, 2]

]
−→ K̃t∗(τ) =

 Ṽ
(1)
∗ (τ) Kt∗ [1,2]

√
Ṽ

(1)
∗ (τ)

√
Ṽ

(2)
∗ (τ)√

Kt∗ [1,1]
√

Kt∗ [2,2]

Kt∗ [2,1]
√

Ṽ
(1)
∗ (τ)

√
Ṽ

(2)
∗ (τ)√

Kt∗ [1,1]
√

Kt∗ [2,2]
Ṽ

(2)
∗ (τ),


(B8)503

where Ṽ
(1)
∗ (τ) and Ṽ

(2)
∗ (τ) are defined in equation (B7). This corrected covariance is ulti-504

mately used to estimate the confidence region described below.505
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Workflow Parameters

Input

n : number of samples in the training dataset
L : number of lags
tv : start index for the predictions in validation dataset
t0 : start index for the predictions in testing dataset
τ : forecast lead time

{[z(1)t , z
(2)
t ]}L+n

t=1 : training dataset

{[z(1)t , z
(2)
t ]}tv+L+τ+nv−2

t=tv : validation set

{[z(1)t , z
(2)
t ]}t0−1

t=t0−L : starting predictors in test set}

C
om

p
u
ta
ti
o
n
st
ep
s

1. Construct the training dataset D(1:2) = {X(1:2),y(1:2)} by equations (B6)
and (B5), X(1:2) ∈ R2L×n, y(1:2) ∈ R2×n

2. Compute E[y(1:2)]

3. Obtain Cov
[ [X(1:2)

y(1:2)

]
,

[
X(1:2)

y(1:2)

] ]
=

[
Cov[X(1:2),X(1:2)] Cov[X(1:2),y(1:2)]
Cov[y(1:2),X(1:2)] Cov[y(1:2),y(1:2)]

]
by cubic spline interpolation

4. In the validation set, obtain the {µt,Kt}tv+L+τ+i−2
t=tv+L+i−1 condition on

{[z(1)t , z
(2)
t ]}tv+L+i−2

t=tv+t−1 for i = 1, . . . , nv by equations (B3) and (B4); here Kt

is equivalent for all t
5. In the validation set, obtain modified covariances as a function of lead time
{K̃tv (t− tv + 1)}tv+τ−1

t=tv by (B7) and (B8)

6. In the test set, obtain {µt}
t0+τ−1
t=t0 by equation (B3)

7. In the test set, apply the covariances obtained in the validation set to the
covariances in the test set according to the corresponding lead time, K̃t0(l)←
K̃tv (l), l = 1, . . . , τ

8. Return µt, K̃t0(t− t0 + 1), t = t0, . . . , t0 + τ − 1

Output
{µt}

t0+τ−1
t=t0 : predicted mean of {[ẑ(1)t , ẑ

(2)
t ]}t0+τ−1

t=t0

{K̃t0(t− t0 + 1)}t0+τ−1
t=t0 : predicted covariance of {[ẑ(1)t , ẑ

(2)
t ]}t0+τ−1

t=t0

Table B1. GP model for the MJO forecast

B3 Estimation of the confidence region506

To obtain the confidence region of the distribution N (µt∗ , K̃t∗(τ)), we first introduce507

Lemmas Appendix B.1 and Appendix B.2 as follows.508

Lemma Appendix B.1. (Result 4.7 in Section 4.2 in (Johnson et al., 2002)) Let Np(µ,Σ)509

denote a p-variate normal distribution with location µ and known covariance Σ. Let x ∼510

Np(µ,Σ). Then511

(a) (x−µ)⊤Σ−1(x−µ) is distributed as χ2
p, where χ2

p denotes the chi-square distribution512

with p degrees of freedom.513

(b) The Np(µ,Σ) distribution assigns probability 1−α to the solid hyperellipsoid {x : (x−514

µ)⊤Σ−1(x− µ) ≤ χ2
p(α)}, where χ2

p(α) denotes the upper (100α)th percentile of the515

χ2
p distribution.516

Proof. See proof of Result 4.7 in Section 4.2 in (Johnson et al., 2002).517

Lemma Appendix B.2. ((4-7) in Section 4.2 in (Johnson et al., 2002)) The hyperellipsoids518

{x : (x−µ)⊤Σ−1(x−µ) = c2} are centered at µ and have axes ±c
√
λi ei, where λi’s, ei’s519

are the eigenvalues and eigenvectors of Σ, namely, Σei = λiei, i = 1, 2, . . . , p.520

–18–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Proof. From Result 4.1 in Section 4.2 in (Johnson et al., 2002) we know that if Σ is positive521

definite and Σei = λiei, then λi > 0 and Σ−1ei =
1
λi
ei. That is, ( 1

λi
, ei) is an eigenvalue-522

eigenvector pair for Σ−1. According to the definition of the hyperellipsoid in quadratic523

form, we can conclude that the hyperellipsoids {x : (x−µ)⊤Σ−1(x−µ) = c2} are centered524

at µ and have axes ±c
√
λi ei.525

According to the above lemmas, the (1 − α) confidence region of the p-variate nor-526

mal distribution is a hyperellipsoid bounded by χ2
p(α), the chi-square distribution with p527

degrees of freedom at the level α (Johnson et al., 2002). Therefore, we can construct a con-528

fidence region for the prediction [ẑ
(1)
t∗ (τ), ẑ

(2)
t∗ (τ)]⊤ at lead time τ , where [ẑ

(1)
t∗ (τ), ẑ

(2)
t∗ (τ)]⊤ ∼529

N (µt∗ , K̃t∗(τ)) after updating the covariance.530

Data Availability Statement531

The daily MJO RMM index dataset is available through the Bureau of Meteorology532

(http://www.bom.gov.au/) and can be accessed at http://www.bom.gov.au/climate/533

mjo/. The codes for the numerical experiments in this work can be found at https://534

doi.org/10.5281/zenodo.13654353 (H. Chen et al., 2024).535
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